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The density-functional theory has been extended to the flows of multicomponent multiphase mixtures contain-
ing solid bodies. It is proposed to consider these bodies as separate phases of a mixture and the rheology of
the indicated bodies as elastic, which enables retention of their shape in the process of motion. This theory
allows one to simultaneously describe a flow of a mixture univariately and the phase transformations occur-
ring in it with the participation of the solid phase. Results of numerical simulation of the motion of a solid
body with no change of phase and with dissolution in a viscous flow are presented.

Introduction. Every so often it is difficult to describe the dynamics of the interphase boundary in multi-
phase flows. In many cases, the topology of the interphase boundaries in a flow of a mixture can restructure with a
loss of smoothness (coalescence or breakage of drops, formation or disappearance of phases in the process of phase
transformations), which makes the formulation of adequate conditions for the case of compression shocks difficult.
This problem can be solved with the use of the density-functional theory that allows one to represent the motion of
a multicomponent, multiphase mixture as a continuous flow free of compression shocks and interphase boundaries,
which is attained by introduction of the squares of the density gradients of the mixture components into the expres-
sion for the free energy of the mixture [1–7]. The main advantage of this approach is that the space distribution of
the phases in a mixture can be determined from the solution of the unique continuous hydrodynamic problem, which
contains information on the structure of the interphase boundary and the interphase transfer of chemical components
of the mixture.

In [6, 7], it was shown that the density-functional theory can be used for numerical simulation of two-phase
mixtures of the gas–liquid and liquid–liquid types. An important problem of the multiphase hydrodynamics is the de-
scription of two-phase flows of the liquid–solid phase type. In the case where the motion of one rigid body in a
boundless liquid is considered, a mathematical model is simplified by passing to the reference system related to this
body. However, this change accomplishes nothing when the motion of several bodies or the motion of one body in a
channel with solid boundaries are considered. The difficulties of mathematical description of the dynamic of the inter-
phase boundaries in a flow of a mixture containing several rigid bodies with mutually movable surfaces are identical
to those for gas-liquid mixtures. In particular, the topology of the interphase boundaries in a mixture can change as a
result of the coalescence of solid-phase particles or their breakage, the precipitation of the solid phase from the liquid
solution, and the dissolution of the solid phase. Since the physical nature of these effects is identical to that of gas-
liquid mixtures, it is reasonable to investigate the possibility of extension of the density-functional method to the flows
with a solid phase.

In the present work, the possibility of using the density-functional method for simulation of isothermic viscous
flows containing solid bodies was investigated. The solid phase is introduced into a model as the liquid or gas phase;
the only difference between these cases is that, instead of the Newtonian-liquid rheology, the rheology of an elastic
body or, in the general case, the rheology of a viscoelastic body is considered. It is interesting that a change in the
rheology causes changes in a number of determining relations of the theory, in particular, in the expressions for chemi-
cal potentials and diffusion flows. Below are basic equations of the theory, algorithms of finite-difference realization
of these equations, and examples of numerical simulation of typical two-dimensional flows.
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Equations of the Density-Functional Theory for a Mixture Containing a Solid Phase. Let an M-compo-
nent mixture occupies the area D with a sectionally smooth boundary ∂D corresponding to the contact with an immov-
able ambient solid body. The mixture can include movable regions in different phase states: gas, liquid, or solid. We
will use the following designations: t is time, ni and mi are the molar density and molar mass of the ith component,
ρ = mini is the mass density. It is assumed that the indices i, j, and k take values 1, ..., M, corresponding to the num-
bers of the mixture components; the indices a, b, and c take values 1, 2, and 3 in accordance with the Cartesian co-
ordinates xa. The summation is performed over recurring indices unless otherwise specified. The following abridged
notation is used for derivatives: g,i = ∂g ⁄ ∂ni, ∂tg = ∂g ⁄ ∂t, and ∂ag = ∂g ⁄ ∂xa. The temperature of the mixture is as-
sumed to be constant; therefore, the temperature dependence of the quantities being considered will be disregarded.

Mixture with a solid phase uneffected by phase transformations. In this case, it is assumed that there exists
any initial state of the mixture, in which the solid phase is in the undeformed state. Let xa0 be the Cartesian coordi-
nates of a particle of the medium in the initial state and xa = xa(t, xb0) be the Cartesian coordinates of the same par-
ticle at the instant t. In the Euler coordinates, the field of motion of the medium ua = ua(t, xb), related to the
mean-mass motion, is defined by the relation

ua = ua (t, xb) = xa − xa0 . (1)

The field of the deformation tensor can be determined, by the field of motion (1), as [8]

εab = εab (t, xc) = 2
−1

 (∂bua + ∂aub − ∂auc∂buc) . (2)

The deformation tensor (2) relates the mass density ρ0 of the particle at the point xa0 in the medium in the initial state
to its mass density ρ at the point xa = xa(t, xb0) at the instant t:

ρ = ρ0 (det (gab))
1 ⁄ 2 ,   gab = δab − 2εab . (3)

The velocity field of the medium can be calculated as the time derivative of the current coordinates of the particle of
the medium with fixed initial coordinates: va = ∂txa(t, xb0). In the Euler coordinates, the velocity field is related to the
field of motion by the relations following from Eq. (1)

∂tua + vb∂bua = va . (4)

Using (2) and (4), one can calculate the time derivative of the deformation tensor

∂tεab = 2
−1

 (∂bva + ∂avb) − vc∂cεab − εac∂bvc − εbc∂avc .
(5)

Equation (5) can be used for restoration of the deformation tensor by the known velocity field. It is assumed that the
deformation-tensor field of the medium in the initial state is equal to zero.

In the density-functional theory, the free energy of a gas-liquid mixture is determined from the expression in-
cluding the density-gradient squares of the mixture components [1–7]

Ffl = ∫ 
D

ωfldV + ∫ 
∂D

θdA , (6)

ωfl = f + 
1
2

 νij∂ani∂anj , (7)

where f = f(ni) is the free energy of a homogeneous mixture per unit volume, θ = θ(ni) is the surface tension at the
boundary between the mixture and the immovable ambient solid phase, and νij = νij(nk) is the positive-definite sym-
metric matrix related to the interphase-tension coefficient in the case where several phases are present in the mixture
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[1, 6, 7]. For example, for the one-dimensional distribution ni = ni(x
1), defining the zone of transition from any phase

A to the phase B, the interphase-tension coefficient is calculated by the formula

γ = ∫ 
−∞

+∞

 νij∂1ni∂1njdx
1
 . (8)

The energy of the elastic deformation of the solid phase (or phases) present in the mixture is estimated by the
functional

Fel = ∫ 
D

ωeldV , (9)

ωel = 2
−1λ (εaa)

2
 + µεabεab , (10)

where λ = λ(ni) and µ = µ(ni) are the Lame′ coefficients dependent on the local density of the mixture components.
It is assumed that these coefficients are equal to zero for the densities ni corresponding to the gas and liquid phases.
At the same time, in the space occupied by the solid phase (phases), the Lame′ coefficients are constant and charac-
terize the elastic properties of the mixture. In the interphase regions, the coefficients λ = λ(ni) and µ = µ(ni) change
markedly with change in the density ni.

Expression (9) represents the simplest model of an isotropic elastic solid body [9]. The state of a particle of
the medium in the solid phase is determined by the local densities of the mixture components and by the deformation
tensor. Consequently, the indicated model takes no account of the possible anisotropy of the solid body or the exist-
ence of additional internal degrees of freedom associated with the orientation of the particle and the structural phase
transformations. The effects defined by the higher powers in the expansion of the elastic energy in terms of the defor-
mation-tensor components are also disregarded. At the same time, the elastic model being used is geometrically non-
linear because the velocity components in Eq. (5) are not usually small.

The total free energy of the mixture is calculated as the sum of the quantities determined by expressions (6)
and (9) and the potential energy of the mixture in the external gravitational field with a potential ϕ = ϕ(xa):

 F = ∫ 
D

(ωfl + ωel + ρϕ) dV + ∫ 
∂D

θdA . (11)

Here, the sum of the quantities determined from (7) and (10) has a physical meaning. The total free energy can be
only conditionally divided into the gas-liquid and elastic-solid energies since the set of the densities ni and the func-
tion f = f(ni) are not independent of the deformations εab because of the conditions defined by relation (3). However,
the above-described formulation of the model with separation of the components defined by (6) and (9) is convenient
to use in practice since the properties of gas-liquid mixtures and solids are frequently investigated independently and
by different methods.

We will calculate a variation of functional (11). Let la be the internal normal to the surface ∂D. In the proc-
ess of varying the indicated functional, some variables integrated over the volume are conveniently brought to a sur-
face integral with the use of the Ostrogradskii–Gauss formula

δF = ∫ 
D

(Φiδni + χabδεab) dV + ∫ 
∂D

Φi∗δnidA , (12) 

where

Φi = f,i + miϕ + 
1
2

 νjk,i∂anj∂ank − νij,k∂anj∂ank − νij∂a∂anj + 2
−1λ,i (εaa)

2
 + µ,iεabεab ;
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χab = λεccδab + 2µεab ;   Φi∗ = θ,i − νijla∂anj .

The hydrodynamics of the mixture is defined by the ordinary conservation equations for the mixture compo-
nents and momentum [10]

∂tni + ∂a (niva + Qia) = 0 , (13)

ρ (∂tva + vb∂bva) = ∂bpab − ρ∂aϕ . (14)

Here, Qia is the vector of the diffusion flow of the ith component and pab is the stress tensor of the mixture. In ac-
cordance with the definition of the mean-mass velocity va, the diffusion-flow vector Qia satisfies the condition miQia
= 0. The quantities Qia and pab should be defined with account of the fact that the total energy of the mixture E, in-
cluding the kinetic and free energies, decreases (11):

E = 2
−1

 ∫ 
D

ρvavadV + F . (15)

The time derivative of the quantity defined by (15) will be calculated with the use of relations (5), (12)–(14) on con-
dition that

va∂D = 0 , (16)

laQia∂D = 0 , (17)

Φi∗∂D = 0 . (18)

Condition (16) is an ordinary adhesion condition for viscous flows, (17) is the condition of impenetrability
of the boundary for diffusion flows, and expression (18) defines the conditions under which the densities of the mix-
ture components relax instantaneously at the boundary. Now, the time derivative of the quantity E can be easily cal-
culated (15):

dE
dt

 = ∫ 
D

ΣdV , (19)

Σ = − τab∂avb + Qia∂aΦi , (20)

τab = pab − σab , (21)

σab = (ωfl + ωel − Φini) δab − νij∂ani∂bnj + χab − χacεcb − χbcεca . (22)

The functional form of expression (20) allows us to interpret the quantities involved in (21) as components of
the viscous-stress tensor and the quantities defined by (22) as components of the static-stress tensor (the stress component
independent of the motion). It is easy to show that, for a homogeneous liquid, the static-stress tensor is determined by
the hydrostatic pressure p: σab = −pδab, and, in the case where the gas-liquid component defined by (10) is absent, for
small deformations the static-stress tensor is equal to the stress tensor of the linear elasticity theory: σab = χab.

In order that the quantity defined by (19) was not positive, it will suffice to require that the following in-
equality be fulfilled:
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Σ ≤ 0 . (23)

The determining relations identical to the relations proposed in [1–7] satisfy this condition:

τab = 

µv − 

2
3

 µs



 ∂cvcδab + µs (∂avb + ∂bva) , (24)

Qia = − Dij∂aΦj . (25)

Here, µv = µv(ni), µs = µs(ni) is the nonnegative coefficients of the volume and shear viscosities, Dij = Dij(nk) is the
nonnegative symmetric diffusion-coefficient matrix obeying the additional condition

Dijmj = 0 . (26)

The determining relations (24) and (25) complete the construction of the model of a multicomponent mixture contain-
ing a moving solid phase. In accordance with the above reasonings, all the phases (gas, liquid, solid) are described
identically. However, it is assumed that the gas and liquid possess a Newtonian rheology and the solid phase offers an
elastic rheology or, if the viscosity coefficient of the slid phase differs from zero, a viscoelastic rheology. The
rheologic coefficients of a concrete mixture are determined by the experimental data on its properties.

Mixture with a solid phase participating in phase transformations. If the solid phase participates in phase
transformations, the initial state, from which displacements (1) and deformations (2) should be measured, can be diffi-
cult to determine. Actually, the solid phase can be absent at the initial moment and be formed in the process of crys-
tallization. For this case, we propose to consider the deformation tensor as not a kinetic variable but as a dynamic
characteristic of the medium related to the velocity field by the modified equation (5):

∂tεab = 2
−1

 (∂bva + ∂avb) − vc∂cεab − εac∂bvc − εbc∂avc − τr
−1εab . (27)

Here, τr = τr(ni) is a positive quantity with the dimensions of time (relaxation time), dependent on the local composi-
tion and characterizing the kinetics of the phase transformations of the solid phase. For example, for a stable solid
phase, the quantity τr can tend to infinity (in this case, Eq. (27) is reduced to Eq. (5)), and, for a gas and a liquid,
the value of τr can be assumed to be close to zero.

The change from Eq. (5) to Eq. (27) changes practically nothing in the above reasonings; in this case, differ-
ences appear only in formula (20). A new expression for the quantity Σ has the form

Σ = − τab∂avb + Qia∂aΦi − τr
−1χabεab .

It is seen that the determining relations (24) and (25) provide the fulfilment of the dissipation condition for model
(23). Thus, the model can consistently describe the formation and dissolution of the solid phase.

Numerical Examples of Flows with a Mobile Solid Phase. We will consider two model problems on a two-
dimensional flow of a binary mixture (M = 2) containing a moving liquid phase A and a moving solid phase B. In
the numerical simulation of multiphase, multicomponents flows, it is necessary to calculate a number of pheno-
menological coefficients and functions, involved in the dynamic equations and determining relations. For this purpose,
we will use the computational procedures proposed in [6, 7].

Free energy. If the deviations of the densities from certain fixed equilibrium values are small, the free energy
of one phase (phase A) can be defined by the square polynomial

fA (ni) = f0A + fiA (ni − niA) + 2
−1

 fijA (ni − niA) (nj − njA) ,

where niA is the nondisturbed value of the molar density for the phase A. The coefficients f0A and fiA are not in-
volved in the hydrodynamical equation; they are used only for calculating the initial nondisturbed pressures and chemi-
cal potentials. These coefficients can be assumed to be equal to zero. For simulation of the fluid dynamics, of
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importance are only the coefficients fijA that are selected in accordance with the data on the modulus of dilatation for
the phase A: EA = fijAniAnjA.

In the case of a two-phase flow (phases A and B), the free energy f is determined from the expressions for
fA(ni) and fB(ni) in the following way:

f = 
fA fB

fA + fB
 .

In the present work, it was assumed that EA = EB = 109 Pa.
Viscosity. It is assumed that the shear and volume viscosities of each phase are known. The viscosity of a

mixture with arbitrary-density components is determined by empirical formulas that allow one to calculate the viscosity
of the mixture by the known viscosities of its components:

µs = cAµsA
1 ⁄ 3 + cBµsB

1 ⁄ 3


3

 ,   µv = cAµvA
1 ⁄ 3 + cBµvB

1 ⁄ 3


3

 ,

cA = 
zB

zA + zB
 ,   cB = 

zA

zA + zB
 ,

zA = 






∑ 

i=1

2

(ni − niA)2







1 ⁄ 2

 ,   zB = 






∑ 

i=1

2

(ni − niB)
2







1 ⁄ 2

 .

It was assumed that µsA = 10−3 Pa⋅sec, µvA = 10−2 Pa⋅sec, and µvB = µsB = 0. 
Diffusion. We will calculate the matrix Dij from the relation for the concentration flow of the mixture com-

ponents following from (25) at νij = 0:

qia = n
−1

Qia = − n
−1

Dij 




∂κj

∂c



 n

 ∂ac − n
−1

Dij 




∂κj

∂n



 c

 ∂an ,

where n = ∑ 

i=1

2

ni  is the total density, c = 
n1

n
 is the concentration of the first component, and κi = f,i is the

chemical potential. Thus the table diffusion coefficient d of the first mixture component is related to the matrix Dij

by the relation

d = n
−1

D1j 




∂κj

∂c



 n

 . (28)

If the free energy f is prescribed for a two-component mixture, the matrix Dij can be uniquely determined by
the coefficient d defined by Eq. (28) on condition (26). The diffusion matrix of the mixture is calculated by the
known values of the diffusion matrix for the phases DijA and DijB: Dij = cADij + cBDijB.

The following values of the parameters being considered were used.
The diffusion coefficient of the second component in the phase A is equal to 10−4 m2⋅sec−1 and this coeffi-

cient of the first component in the phase B is 10−10 m2⋅sec−1.
The surface tension at the mixture–solid wall interface is equal to zero: θ = 0.
The matrix coefficients νij are constants proportional to the unit-matrix coefficients: νij = νδij. The unknown

coefficient ν is determined from the expression for the surface tension coefficient (8) of the interface between the
phases A and B in the case of static solution of the problem; it is equal to γ = 0.05 N/m.
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The Lame′ coefficients are calculated by the formulas λ = λ0cB
2  and µ = µ0cB

2 , where λ0 = µ0 = 106 Pa. It
should be noted that, since the coefficient µ has a relatively small value, shear deformations of the phase B took place
in the calculations.

The other parameters of the model had the following values: ρ1 = 1000 kg/m3, ρ2 = 1500 kg/m3, m1 = 18
kg/mole, and m2 = 50 kg/mole.

In both problems, the motion of a solid body, formed by the phase B, in a flow of a viscous fluid repre-
senting the phase A was considered. In the first problem, the solid phase does not experience phase transformations,
and, in the second problem, this phase is subjected to such transformations (it is dissolved). A mixture flows in a
channel containing two immobile partitions serving as the guides for the mixture flow. The upper and lower walls of
the channel are impenetrable. At these walls and at the partitions, the boundary conditions (16)–(18) are fulfilled. The
fluid consisting of the pure first component flows into the channel with a velocity u0 = −0.55 m/sec on its right side,
and, on the left side of the channel, the mixture is removed with a rate necessary for the retention of a medium pres-
sure in the channel. The computational region is approximated with the use of 200 × 100 square cells with sides of
length 5⋅10−4 m. An explicit computational scheme of the second order of accuracy with nodes positioned in staggered
rows [11] is used. At the initial instant of time, a part of the computational region is occupied by the first component
(fluid), and the other part, representing the initial position of the solid body, is occupied by the second component.
The initial velocity of the flow is equal to zero.

Problem 1. Flow of a mixture with a moving solid phase with no change of phase. It is assumed that the liquid
phase A contains 100 percent of the first component and the solid phase B contains 100 percent of the second component.

Figure 1 shows the computational-grid cells (Fig. 1a–c) occupied by the solid phase and the isolines of the
fields of the longitudinal v1 (Fig. 1d–f) and transverse v2 (Fig. 1g–i) velocity components at different successive in-
stants of time. The straight lines in Fig. 1a–c denote the impenetrable partitions. As is seen from the figures, the
solid body moves along the curvilinear trajectory, bends around the partitions and, in doing so, conserves its initial

Fig. 1. Concentration fields of the solid component (a–c), the longitudinal veloc-
ity v1 (d–f), and the transverse velocity v2 (g–i) at the instant of time t = 0.041
sec (a, d, g), 0.074 sec (b, e, f), and 0.135 sec (c, f, i). v1, v2, m/sec; x, y, m.
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shape. The fluid motion is coordinated with the solid motion: the velocity field is continuous. Moreover, the isolines
of the longitudinal velocity inside the body are always parallel to the horizontal walls of the channel, and the trans-
verse-velocity isolines are always perpendicular to them, which is characteristic of the motion of solid bodies. In ac-
cordance with the boundary conditions (16), both velocity components are equal to zero at the upper and lower sides
of the model.

Problem 2. Flow of a mixture with a moving solid phase experiencing phase transformations. It is assumed
that the phase A in equilibrium contains 90 percent of the first component and the solid phase B contains 100 percent
of the second component. Since the liquid phase in the initial state is insufficiently saturated, the solid body is dis-
solved. In Fig. 2, the concentration fields of the second component at three successive instants of time are shown by
the grey-colored gradations. In this case, once the solid body begins to move, it is dissolved and its shape is changed.
At the instant of time t = 0.219 sec, only about one-half its initial volume is remained. It should be noted that the
trajectories of the solid body in this problem and in the previous one are different. This is explained by the fact that
all the fields calculated are interdependent and the change in the concentration field leads in the end to a change in
the velocity field determining the trajectory of the body. It should be also noted that the rapid dissolution of the body
is due to the large diffusion coefficient, characteristic of dense gases, used for the liquid phase.

Conclusions. The results of our numerical simulation show that viscous flows containing solid bodies can be
adequately described using equations of the density-functional theory. These equations allow one to perform a unified
description of the solid and liquid phases without formulation of the conditions of contact at the liquid–solid body in-
terface. Moreover, one and the same system of equations is used for description of flows with change of phase and
flows with no such a change.

In the present work, only the isothermic flows were considered. However, the theory can be extended to the
nonisothermic case as was done earlier for the gas-liquid mixtures [2, 7].

NOTATION

c, concentration of the first component; cA, cB, subsidiary variables; D, space region; d, diffusion coefficient
of the first component, m2/sec; dA, surface element, m2; ∂D, boundary of a space region; dV, volume element, m3;
Dij, DijA, and DijB, matrices of the diffusion coefficients of the mixture and the phases A and B, respectively,
sec⋅mole2/(m3⋅kg); E, total energy of the mixture, J; EA and EB, modulus of dilatation of the phases A and B, respec-
tively, Pa; F, total free energy of the mixture, J; f, free energy of the homogeneous mixture per unit volume, Pa; fA
and fB, total free energy of the phases A and B respectively, Pa; f0A, fiA, and fijA, coefficients of the zero-, first-, and
second-power square polynomials of the phase free energy, Pa, kg⋅m2/(sec⋅mole) and kg⋅m5/(sec⋅mole); Fel, contribu-
tion of the energy of the solid-phase elastic deformations to the free energy, J; Ffl, free energy of the gas-liquid mix-
ture, J; g, arbitrary subsidiary function; gab, metric tensor; la, internal normal to the surface; mi, molar mass of the ith
component, kg/mole; n, total molar density of the mixture, mole/m3; ni, molar density of the ith component, mole/m3;
niA, niB, nondisturbed molar density of the ith component of the phases A and B respectively, mole/m3; p, pressure,

Fig. 2. Concentration fields of the solid component in problem 2 at the instant
of time t = 0.057 (a), 0.093 (b), and 0.219 sec (c). x, y, m.
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Pa; pab, stress tensor of the mixture, Pa; Qia, diffusion-flow vector of the ith component, mole/(sec⋅m2); t, time, sec;
u0, velocity of the first-component flow, m/sec; ua, displacement of a particle of the medium along the Cartesian co-
ordinate xa relative to its initial position, m; v, mean-mass velocity, m/sec; x, y, Cartesian coordinates, m; zA, zB, sub-
sidiary variables, mole/m3; γ, coefficient of interphase surface tension, N/m; δab, unit matrix; εab, deformation tensor;
θ, surface tension at the interface between the mixture and the immovable ambient solid phase, Pa⋅m; κi, chemical po-
tential of the ith component, kg⋅m2/(sec⋅mole); λ and µ, first and second Lame coefficients of the mixture, Pa; λ0 and
µ0, first and second Lame′ coefficients of the solid phase, Pa; µs, shear-viscosity coefficient, Pa⋅sec; µvA and µvB, vol-
ume-viscosity coefficients; µsA and µsB, shear-viscosity coefficients of the phases A and B respectively, Pa⋅sec; µv,
volume-viscosity coefficient of the phases A and B respectively, Pa⋅sec; νij, coefficients of the symmetric positive-defi-
nite matrix, kg⋅m7/(sec2⋅mole2); ρ, mass density of the mixture, kg/m3; ρ0,mass density of the mixture in the initial
state, kg/m3; Σ, subsidiary function, Pa/sec; σab, static-stress tensor of the mixture, Pa; τab, viscous-stress tensor of the
mixture, Pa; τr, relaxation time, sec; ϕ, gravitational potential; m2/sec2; Φi and Φi∗, generalized chemical potentials of
the ith component of the mixture in the bulk and at the surface, kg⋅m2/(sec⋅mole) and kg⋅m3/(sec⋅mole); χab, subsidiary
tensor, Pa; ωel, contribution of the elastic-deformation energy of the solid phase to the free energy per unit volume,
Pa; ωfl, free energy of the gas-liquid mixture per unit volume, Pa. Subscripts: el, elastic; fl, gas-liquid mixture; r, re-
laxation; v, volume; s, shear; a, b, c, for Cartesian coordinates; i, j, k, for mixture components.
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